



# Vector DERMS – OSCP Integration Introduction

© Vector Limited 2025

*The information contained in this document is proprietary to Vector Limited. It may not be used, reproduced, or disclosed to others except employees of the recipient of this document who have the need to know for the purposes of this assignment. Prior to such disclosure, the recipient of this document must obtain the agreement of such employees or other parties to receive and use such information as proprietary and confidential and subject to non-disclosure on the same conditions as set out above.*

*The recipient by retaining and using this document agrees to the above restrictions and shall protect the document and information contained in it from loss, theft and misuse.*



## Table of contents

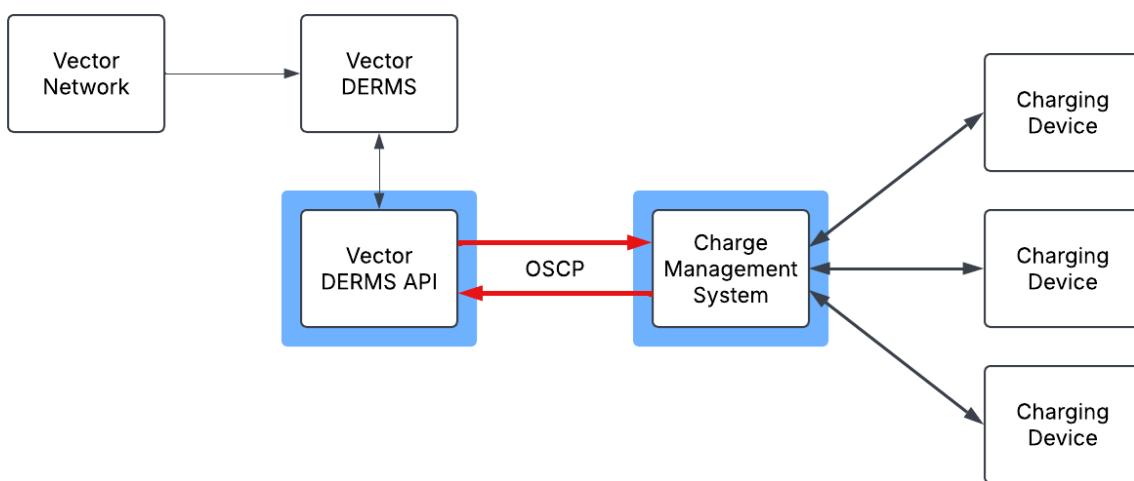
|                                                                                 |    |
|---------------------------------------------------------------------------------|----|
| <b>1. Document overview</b> .....                                               | 4  |
| <b>1.1 Purpose</b> .....                                                        | 4  |
| <b>1.2 Context</b> .....                                                        | 4  |
| <b>2. On Boarding Process</b> .....                                             | 5  |
| <b>2.1 Integration Kick Off Meeting</b> .....                                   | 5  |
| <b>2.2 Technical/API Documentation Exchange</b> .....                           | 5  |
| <b>2.3 Configuration and Credential Exchange</b> .....                          | 5  |
| <b>2.4 Development and Testing</b> .....                                        | 7  |
| <b>2.5 Production</b> .....                                                     | 7  |
| <b>3. API Messaging Flows</b> .....                                             | 8  |
| <b>3.1 24 Hour Forecasted / Flexibility Execution</b> .....                     | 8  |
| <b>3.2 Update Group Forecasts</b> .....                                         | 8  |
| <b>API-EP.01: Notify DOE / Charge Profile</b> .....                             | 8  |
| <b>3.3 Update Assets Measurements</b> .....                                     | 8  |
| <b>API-EP.02: To receive Actuals / Metering data – Group consumptions</b> ..... | 8  |
| <b>3.4 Request Capacity Adjustment</b> .....                                    | 9  |
| <b>API-EP.03: Adjust Capacity Forecast</b> .....                                | 9  |
| <b>3.5 Compliance Error</b> .....                                               | 9  |
| <b>API-EP.04: Group Compliance Error</b> .....                                  | 9  |
| <b>3.6 Handshakes and Heartbeats</b> .....                                      | 10 |
| <b>API-EP.05: Invoke Handshake API</b> .....                                    | 10 |
| <b>API-EP.06: To Receive Handshake Acknowledgement</b> .....                    | 10 |
| <b>API-EP.07: Invoke Heartbeat API</b> .....                                    | 11 |
| <b>4. More Details</b> .....                                                    | 11 |

## Document references

| Document | Description           | Location                                                           |
|----------|-----------------------|--------------------------------------------------------------------|
| REF.3    | OCPP Specification    | <a href="#">OCPP 2.0.1, Protocols, Home - Open Charge Alliance</a> |
| REF.4    | OSCP Specification    | <a href="#">OSCP 2.0, Protocols, Home - Open Charge Alliance</a>   |
| REF.5    | OpenADR Specification | <a href="#">Home (openadr.org)</a>                                 |
|          |                       |                                                                    |
|          |                       |                                                                    |

## Glossary of terms

| Term    | Description                                   |
|---------|-----------------------------------------------|
| DERMS   | Distributed Energy Resource Management System |
| API     | Application Programming Interface             |
| DERs    | Distribution Energy Resources                 |
| DOE     | Dynamic Operating Envelope                    |
| ADMS    | Advanced Distribution Management Systems      |
| OSCP    | Open Smart Charging Protocol                  |
| OCPP    | Open Charge Point Protocol                    |
| EV      | Electric Vehicle                              |
| CP      | Capacity Provider                             |
| CO / FP | Charge Operator / Flexibility Provider        |
| OCA     | Open Charge Alliance                          |
| OpenADR | Open Automated Demand Response                |


## 1. Document overview

### 1.1 Purpose

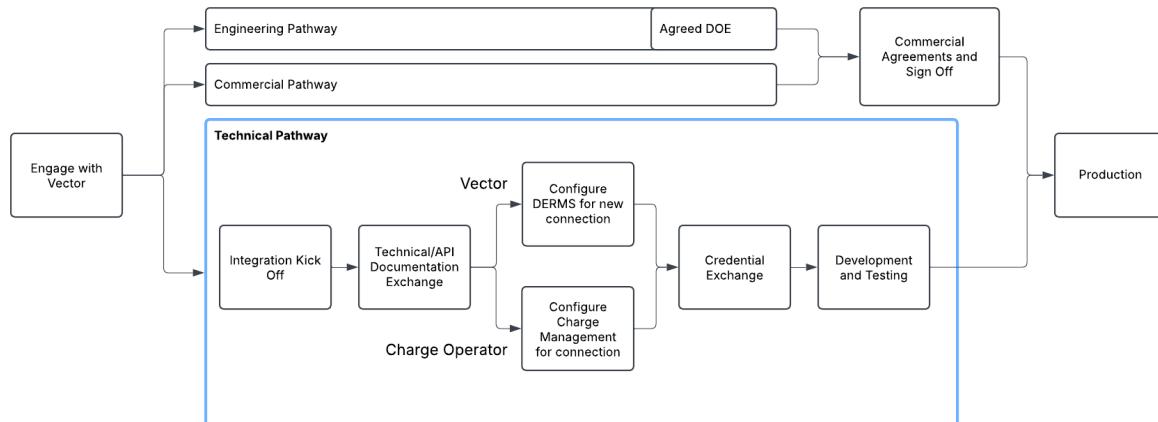
The purpose of this document is to describe the requirements for connecting a Charge Management System to Vector's DERMS via OSCP.

### 1.2 Context

Demand management allows Vector to dynamically control and optimize utilization of network capacity through capacity forecasting and profiling. Capacity profiles are derived based on forecasts, metering, and the grid capacity and constraints etc.



**Figure 1: Demand Management Overview**


This control enables reduction of peak demand on the Vector network, therefore allowing Vector maintain reliability and minimize costs to its customers.

To enable this, an integration between Charge Management solutions and Vector's DERMS is required to receive Demand Forecast/Actual metering data and notify Charge operators of the permitted Charge Profile/Capacity.

Different standards were considered to implement this interface, and the Open Smart Charging Protocol (OSCP) was selected as the first interface available for connection to Vector's DERMS.

OSCP is a free, open protocol maintained by the Open Charge Alliance (OCA).

## 2. On Boarding Process



This document is scope for the Technical pathway of the DERMS onboarding process.

### 2.1 Integration Kick Off Meeting

To start the process there will be an integration kick off meeting. This is an opportunity for individuals from both parties to meet and discuss the upcoming integration and ensure that everyone is aware of the process going forward.

### 2.2 Technical/API Documentation Exchange

Vector will provide documentation for the Charge Operator to connect to the API, including an OpenAPI specification and Postman collection as examples of how the connections work.

The Charge Operator should also provide documentation to Vector for their OSCP API/endpoints if such is available at this point.

### 2.3 Configuration and Credential Exchange

To allow the connection to be established, Vector will configure the DERMS system with details of the new Charge Operator, including generating credentials for connections to Vector and storing credentials for Vector to connect to the Charge Operator.

---

*Note at time of writing Vector only supports OAuth Client Credentials for inbound and outbound connections.*

---

As part of this configuration, the following information should be exchanged:

## Provided by Charge Operator to Vector

| Item Provided                          | Description                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OSCP API URL                           | <p>Base URL used by Vector to communicate with Charge Operator, providing the following OSCP endpoints:</p> <ul style="list-style-type: none"> <li>• /oscp/fp/2.0/handshake</li> <li>• /oscp/fp/2.0/update_group_capacity_forecast</li> <li>• /oscp/fp/2.0/heartbeat</li> </ul>                                                                                                                                         |
| OAuth Token URL                        | URL used by Vector to fetch an access token (using OAuth <code>client_credentials grant</code> ) to use the OSCP API                                                                                                                                                                                                                                                                                                    |
| OAuth Client Credentials ID and Secret | OAuth credentials for Vector to generate access tokens                                                                                                                                                                                                                                                                                                                                                                  |
| Required HTTP Headers                  | Any static HTTP headers required by the Charge Operator OSCP API, such as API key etc.                                                                                                                                                                                                                                                                                                                                  |
| Site Asset ID(s)                       | <p>Each managed DER site needs an Asset ID that is included in the OSCP payloads sent from the Charge Operator to VTS.</p> <hr/> <p><i>Note the current Vector OSCP implementation assumes that there will be a one-to-one mapping of Asset and Group ID, so both should relate to the site being managed with this connection.</i></p> <hr/>                                                                           |
| Site Group ID(s)                       | <p>Each managed DER site needs a Group ID that is agreed between Vector and the Charge Operator, and will be used in OSCP payloads from both parties to identify which site each message relates to.</p> <p>Group IDs should be alphanumeric strings with no spaces. Some reasonable examples would be:</p> <ul style="list-style-type: none"> <li>• BUS_AUK_1</li> <li>• ALBANY_123</li> <li>• FP_NZ_AKL_01</li> </ul> |

## Provided by Vector to Charge Operator

| Item Provided   | Description                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OSCP API URL    | <p>Base URL of the Vector API providing the OSCP endpoints.</p> <ul style="list-style-type: none"> <li>• Production: <a href="https://evbus.api.vector.co.nz">https://evbus.api.vector.co.nz</a></li> <li>• Test: <a href="https://evbus.test.api.vector.co.nz">https://evbus.test.api.vector.co.nz</a></li> </ul>                                                                                              |
| OAuth Token URL | <p>URL used by Charge Operator to fetch an access token (using OAuth <code>client_credentials grant</code>) to use the OSCP API.</p> <ul style="list-style-type: none"> <li>• Production: <a href="https://evbus.api.vector.co.nz/token">https://evbus.api.vector.co.nz/token</a></li> <li>• Test: <a href="https://evbus.test.api.vector.co.nz/token">https://evbus.test.api.vector.co.nz/token</a></li> </ul> |

|                                        |                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OAuth Client Credentials ID and Secret | OAuth credentials for Charge Operator to generate access tokens                                                                                                                                                                                                                                                                                                            |
| Required HTTP Headers                  | <p>Static HTTP headers required to call Vector OSCP endpoints.</p> <ul style="list-style-type: none"> <li>• fp-id: &lt;flexibility-provider-id&gt;</li> <li>• apikey: &lt;api-key&gt;</li> <li>• x-request-id: &lt;new-uuid-per-request&gt;</li> </ul> <p>For test only:</p> <ul style="list-style-type: none"> <li>• x-access-token: &lt;test-access-token&gt;</li> </ul> |

## 2.4 Development and Testing

Once the connection details are provided, Vector and the Charge Operator will complete any necessary development and testing of their respective OSCP APIs.

During this process Vector technical staff will work with the Charge Operator to help with any issues that arise.

When the development is completed, the OSCP connection between Vector DERMS and the Charge Management System should be running without issues in the non-production environment.

## 2.5 Production

On completion of the integration process, and the commercial agreement between Vector and the Charge Operator is signed, Vector will configure the production DERMS instance.

This includes applying the contractually agreed limitations and base DOE/charging profile for the connection.

Connection details and credentials will need be provided again by both parties.

### 3. API Messaging Flows

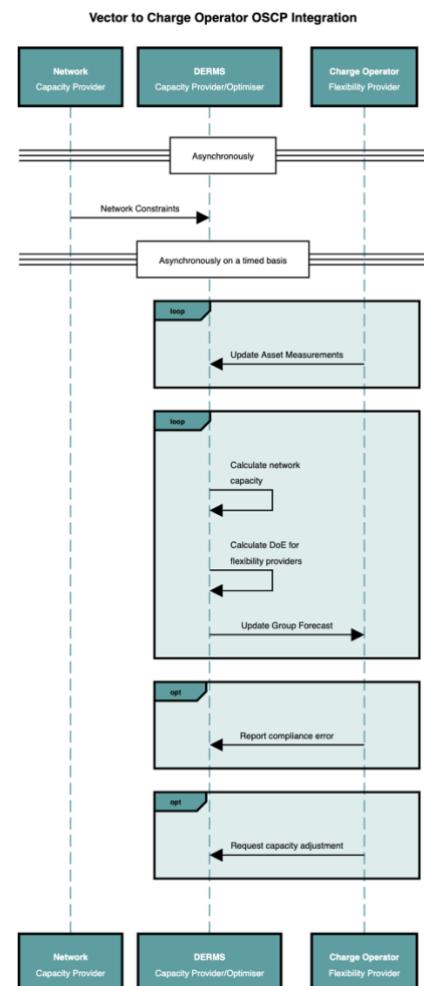
#### 3.1 24 Hour Forecasted / Flexibility Execution

This is a high-level sequence diagram that depicts communication flows between Charge Operators and Vector's DERMS.

#### 3.2 Update Group Forecasts

Vector will periodically forecast consumption on the network and calculate appropriate DOEs for Charge Operators in line with the contractual agreements for the connection.

Under normal operating conditions, updated group forecast messages are sent every 15 minutes and contain a DOE/charging profile for the next 24 hours.


Charge Operators are expected to apply the charging limitations as soon as possible, and no more than 2 minutes, after receiving new group forecasts.

In event of network issues, Vector may send a DOE/capacity profile that consists entirely of zero-value charge allowances. These payloads are intended to protect the network, and Charge Operators are expected to stop all charging operations on the site as quickly as possible.

Once the network returns to a normal state, updated DOEs will be sent indicating that charging may be resumed.

##### API-EP.01: Notify DOE / Charge Profile

|             |                                             |
|-------------|---------------------------------------------|
| Endpoint    | /oscp/fp/2.0/update_group_capacity_forecast |
| HTTP Method | POST                                        |
| Direction   | Vector -> Charge Operator                   |



#### 3.3 Update Assets Measurements

The Charge Operator should provide updated measurements of actual consumption at 15-minute intervals (aligned with the hour, so at 12:00, 12:15, 12:30 etc.). Two measurements are included in this payload – Energy Measurements and Instantaneous Measurements.

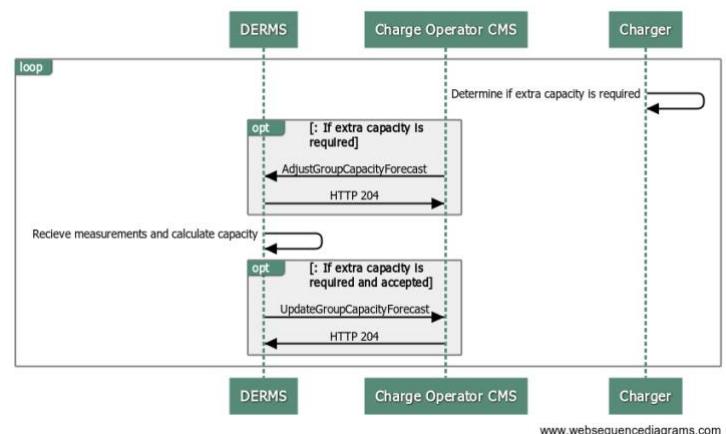
Energy measurements are the total consumption for each 15-minute period, measured in kWh or Wh.

Instantaneous measurements indicate the **maximum** point load during the 15-minute period, measured in kW or W.

*Note: The OSCP specification also allows A, kWh or Wh for instantaneous measurements, but Vector does not currently support these units.*

##### API-EP.02: To receive Actuals / Metering data – Group consumptions

|             |                                        |
|-------------|----------------------------------------|
| Endpoint    | /oscp/cp/2.0/update_asset_measurements |
| HTTP Method | POST                                   |
| Direction   | Charge Operator -> Vector              |

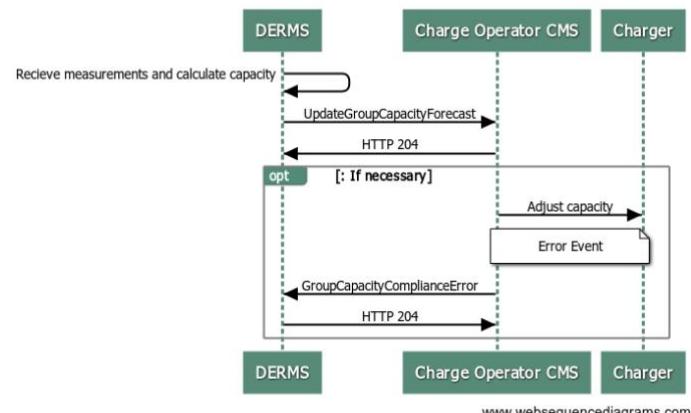

Vector does not currently support the OSCP update\_group\_measurements endpoint. Since we treat each group as containing a single asset, there is no benefit from providing both calls as the update\_asset\_measurement endpoint allows for all the information to be provided.

As such, all charging activity for a group must be aggregated into a single “asset” value prior to sending to Vector.

### 3.4 Request Capacity Adjustment

In case the demands of a Charge Operators are not met by the capacity limits provided by Vector in the DOE, and adjustment of the capacity can be requested.

Making such a request does not guarantee an update to the DOE from Vector. If such an update is provided, it will be delivered through the Update Group Capacity endpoint as usual.




#### API-EP.03: Adjust Capacity Forecast

|             |                                             |
|-------------|---------------------------------------------|
| Endpoint    | /oscp/cp/2.0/adjust_group_capacity_forecast |
| HTTP Method | POST                                        |
| Direction   | Charge Operator -> Vector                   |

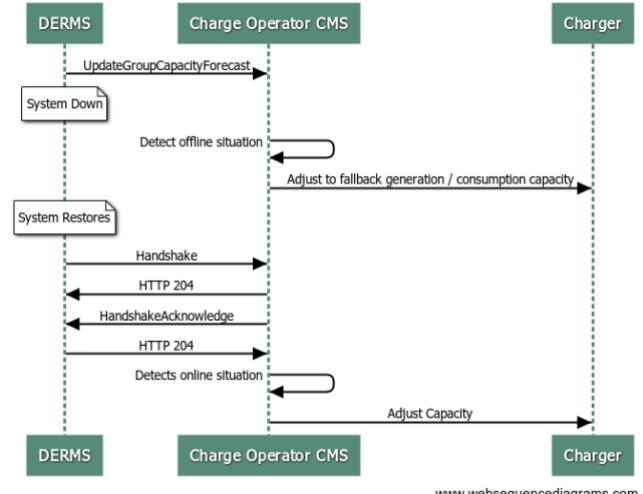
### 3.5 Compliance Error

In the event a Charge Operator cannot comply with and/or knowingly exceeds a DOE provided by Vector, the breach must be reported via a Group Compliance Error call.



#### API-EP.04: Group Compliance Error

|             |                                              |
|-------------|----------------------------------------------|
| Endpoint    | /oscp/cp/2.0/group_capacity_compliance_error |
| HTTP Method | POST                                         |
| Direction   | Charge Operator -> Vector                    |


### 3.6 Handshakes and Heartbeats

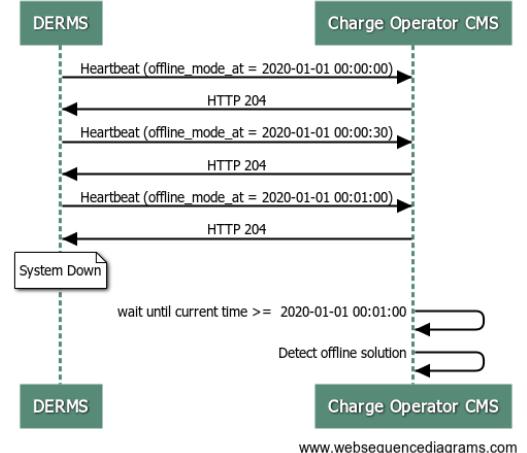
OSCP connections must be initiated with a Handshake request. This can be sent by either party and is acknowledged by a HandshakeAcknowledge message sent in the opposite direction.

Both messages MUST be replied to with a HTTP 204, which should be sent prior to sending the acknowledge message.

*Under the OSCP Specification, no messages can be sent when the connection is offline, and if a message is received while offline it should not be accepted.*

*Handshakes must be performed prior to any other messages if/when the connection is offline.*




The purpose of the Heartbeat message is to periodically confirm to both parties that the remote API is still available. The frequency in which a heartbeat is expected is provided in the Heartbeat message itself, though it is recommended that the expiry date is at least twice as long as the standard heartbeat interval, allowing for small network glitches without taking the connection offline.

Heartbeats must be sent by both parties regularly.

#### API-EP.05: Invoke Handshake API

|                    |                           |
|--------------------|---------------------------|
| <b>Endpoint</b>    | /oscp/fp/2.0/handshake    |
| <b>HTTP Method</b> | POST                      |
| <b>Direction</b>   | Vector -> Charge Operator |

|                    |                           |
|--------------------|---------------------------|
| <b>Endpoint</b>    | /oscp/cp/2.0/handshake    |
| <b>HTTP Method</b> | POST                      |
| <b>Direction</b>   | Charge Operator -> Vector |



#### API-EP.06: To Receive Handshake Acknowledgement

|                    |                                    |
|--------------------|------------------------------------|
| <b>Endpoint</b>    | /oscp/cp/2.0/handshake_acknowledge |
| <b>HTTP Method</b> | POST                               |
| <b>Direction</b>   | Charge Operator -> Vector          |

|                    |                                    |
|--------------------|------------------------------------|
| <b>Endpoint</b>    | /oscp/fp/2.0/handshake_acknowledge |
| <b>HTTP Method</b> | POST                               |
| <b>Direction</b>   | Vector -> Charge Operator          |

**API-EP.07: Invoke Heartbeat API**

|                    |                           |
|--------------------|---------------------------|
| <b>Endpoint</b>    | /oscp/fp/2.0/heartbeat    |
| <b>HTTP Method</b> | POST                      |
| <b>Direction</b>   | Vector -> Charge Operator |

|                    |                           |
|--------------------|---------------------------|
| <b>Endpoint</b>    | /oscp/cp/2.0/heartbeat    |
| <b>HTTP Method</b> | POST                      |
| <b>Direction</b>   | Charge Operator -> Vector |

#### 4. More Details

For more details about Vectors implementation of the OSCP API, including OAuth details for authenticating with the APIs will be provided in an OpenAPI specification and Postman collection.